Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 132(Pt 1): 147-55, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19015158

RESUMEN

Mutations in COL6A1, COL6A2 and COL6A3, the genes which encode the extra-cellular matrix component collagen VI, lead to Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). Although the Col6a1(-/-) null mouse has an extremely mild neuromuscular phenotype, a mitochondrial defect has been demonstrated, linked to dysregulation of the mitochondrial permeability transition pore (PTP) opening. This finding has been replicated in UCMD muscle cells in culture, providing justification for a clinical trial using cyclosporine A, an inhibitor of PTP opening. We investigated whether PTP dysregulation could be detected in UCMD fibroblasts (the predominant source of muscle collagen VI), in myoblast cells from patients with other diseases and its response to rescue agents other than collagen VI. Although we confirm the presence of PTP dysregulation in muscle-derived cultures from two UCMD patients, fibroblasts from the same patients and the majority of fibroblasts from other well-characterized UCMD patients behave normally. PTP dysregulation is found in limb girdle muscular dystrophy (LGMD) type 2B myoblasts but not in myoblasts from patients with Bethlem myopathy, merosin-deficient congenital muscular dystrophy, LGMD2A, Duchenne muscular dystrophy and Leigh syndrome. In addition to rescue by cyclosporine A and collagen VI, this cellular phenotype was also rescued by other extra-cellular matrix constituents (laminin and collagen I). As the muscle derived cultures demonstrating PTP dysregulation shared poor growth in culture and lack of desmin labelling, we believe that PTP dysregulation may be a particular characteristic of the state of these cells in culture and is not specific to the collagen VI defect, and can in any case be rescued by a range of extra-cellular matrix components. Further work is needed on the relationship of PTP dysregulation with UCMD pathology.


Asunto(s)
Ciclosporina/farmacología , Mitocondrias/fisiología , Distrofias Musculares/patología , Adolescente , Células Cultivadas , Niño , Preescolar , Colágeno Tipo VI/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Rodaminas , Piel/metabolismo , Adulto Joven
2.
Hum Mutat ; 29(6): 809-22, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18366090

RESUMEN

Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two related conditions of differing severity. BM is a relatively mild dominantly inherited disorder characterized by proximal weakness and distal joint contractures. UCMD was originally regarded as an exclusively autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. We and others have subsequently modified this model when we described UCMD patients with heterozygous in-frame deletions acting in a dominant-negative way. Here we report 10 unrelated patients with a UCMD clinical phenotype and de novo dominant negative heterozygous splice mutations in COL6A1, COL6A2, and COL6A3 and contrast our findings with four UCMD patients with recessively acting splice mutations and two BM patients with heterozygous splice mutations. We find that the location of the skipped exon relative to the molecular structure of the collagen chain strongly correlates with the clinical phenotype. Analysis by immunohistochemical staining of muscle biopsies and dermal fibroblast cultures, as well as immunoprecipitation to study protein biosynthesis and assembly, suggests different mechanisms each for exon skipping mutations underlying dominant UCMD, dominant BM, and recessive UCMD. We provide further evidence that de novo dominant mutations in severe UCMD occur relatively frequently in all three collagen VI chains and offer biochemical insight into genotype-phenotype correlations within the collagen VI-related disorders by showing that severity of the phenotype depends on the ability of mutant chains to be incorporated in the multimeric structure of collagen VI.


Asunto(s)
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Mutación , Empalme del ARN , Células Cultivadas , Colágeno Tipo VI/metabolismo , Análisis Mutacional de ADN , Exones , Fibroblastos/metabolismo , Eliminación de Gen , Humanos , Músculo Esquelético/metabolismo , Índice de Severidad de la Enfermedad , Piel/citología
3.
J Med Genet ; 42(9): 673-85, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16141002

RESUMEN

Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.


Asunto(s)
Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Miopatías Distales/diagnóstico , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Miopatías Distales/terapia , Asesoramiento Genético , Ligamiento Genético , Genómica , Humanos , Inmunohistoquímica , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Distrofias Musculares/congénito , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/terapia , Fenotipo , Diagnóstico Prenatal
4.
J Med Genet ; 42(2): 108-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15689448

RESUMEN

INTRODUCTION: Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). BM is a relatively mild dominantly inherited disorder with proximal weakness and distal joint contractures. UCMD is an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. METHODS: We developed a method for rapid direct sequence analysis of all 107 coding exons of the COL6 genes using single condition amplification/internal primer (SCAIP) sequencing. We have sequenced all three COL6 genes from genomic DNA in 79 patients with UCMD or BM. RESULTS: We found putative mutations in one of the COL6 genes in 62% of patients. This more than doubles the number of identified COL6 mutations. Most of these changes are consistent with straightforward autosomal dominant or recessive inheritance. However, some patients showed changes in more than one of the COL6 genes, and our results suggest that some UCMD patients may have dominantly acting mutations rather than recessive disease. DISCUSSION: Our findings may explain some or all of the cases of UCMD that are unlinked to the COL6 loci under a recessive model. The large number of single nucleotide polymorphisms which we generated in the course of this work may be of importance in determining the major phenotypic variability seen in this group of disorders.


Asunto(s)
Colágeno Tipo VI/genética , Enfermedades Musculares/genética , Distrofias Musculares/genética , Análisis Mutacional de ADN , Genómica/métodos , Humanos , Distrofias Musculares/congénito , Mutación , Polimorfismo Genético
5.
Neuropathol Appl Neurobiol ; 30(2): 91-105, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15043707

RESUMEN

The limb-girdle muscular dystrophies are a diverse group of muscle-wasting disorders characteristically affecting the large muscles of the pelvic and shoulder girdles. Molecular genetic analyses have demonstrated causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. Muscular dystrophy includes a spectrum of disorders caused by loss of the linkage between the extracellular matrix and the actin cytoskeleton. Within this are the forms of limb-girdle muscular dystrophy caused by deficiencies of the sarcoglycan complex and by aberrant glycosylation of alpha-dystroglycan caused by mutations in the fukutin-related protein gene. However, other forms of this disease have distinct pathophysiological mechanisms. For example, deficiency of dysferlin disrupts sarcolemmal membrane repair, whilst loss of calpain-3 may exert its pathological influence either by perturbation of the IkappaBalpha/NF-kappaB pathway, or through calpain-dependent cytoskeletal remodelling. Caveolin-3 is implicated in numerous cell-signalling pathways and involved in the biogenesis of the T-tubule system. Alterations in the nuclear lamina caused by mutations in laminA/C, sarcomeric changes in titin, telethonin or myotilin at the Z-disc, and subtle changes in the extracellular matrix proteins laminin-alpha2 or collagen VI can all lead to a limb-girdle muscular dystrophy phenotype, although the specific pathological mechanisms remain obscure. Differential diagnosis of these disorders requires the careful application of a broad range of disciplines: clinical assessment, immunohistochemistry and immunoblotting using a panel of antibodies and extensive molecular genetic analyses.


Asunto(s)
Músculo Esquelético/fisiopatología , Distrofias Musculares , Animales , Humanos , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/fisiopatología
6.
Eur J Hum Genet ; 12(2): 127-31, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14560310

RESUMEN

Deficiency of the skeletal muscle membrane protein dysferlin causes the related and overlapping neuromuscular disorders limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. This paper describes the preliminary characterisation of the human dysferlin promoter. The transcriptional start site of dysferlin has been mapped using 5' RACE PCR, which extended the length of the known 5' UTR to 914 bp. Promoter elements have been mapped by assessing the ability of fragments from this region to activate the expression of a luciferase reporter gene borne on a plasmid transfected into differentiated and undifferentiated C2C12 mouse myoblast cells. Finally, the core promoter region has been screened for mutations in suspected dysferlinopathy patients.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas , Animales , Western Blotting , Línea Celular , Disferlina , Humanos , Ratones , Datos de Secuencia Molecular , Enfermedades Musculares/genética , Reacción en Cadena de la Polimerasa
7.
Neuroreport ; 14(3): 485-8, 2003 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-12634509

RESUMEN

Following the association of hereditary spastic paraparesis (HSP) with mutation in the paraplegin gene (SPG7) and mitochondrial dysfunction, we wished to investigate whether mitochondrial dysfunction might be associated with other forms of HSP. Five cases of HSP caused by mutation in the spastin gene (SPG4) and nine cases with HSP with mutation in the spastin and paraplegin genes excluded (non-SPG4/SPG7), were investigated for mitochondrial dysfunction. Muscle tissue from the HSP groups and a control group was analysed histochemically and spectrophotometrically for mitochondrial dysfunction. A significant decrease in mitochondrial respiratory chain complexes I and IV was demonstrated in the non-SPG4/SPG7 group. No abnormality was detected in the SPG4 group. We therefore conclude that there is evidence for mitochondrial dysfunction in non-SPG4/SPG7 HSP. There is no evidence for mitochondrial dysfunction in the pathogenesis of spastin-related HSP.


Asunto(s)
Mitocondrias Musculares/metabolismo , Paraplejía Espástica Hereditaria/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adulto , Anciano , Grupos Control , Histocitoquímica , Humanos , Metaloendopeptidasas/genética , Persona de Mediana Edad , Mitocondrias Musculares/fisiología , Enfermedades Mitocondriales/etiología , Músculo Esquelético/metabolismo , Mutación , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/genética , Espastina , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...